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Abstract 
Implicit time differencing methods are usually 

developed to be time accurate. The typical imple- 
mentation and use, though, is either non-time ac- 
curate for steady state convergence acceleration or 
the schemes are modified (e.g. approximate factor- 
ization, explicit boundary conditions, linearization 
error, etc.) to enhance their efficiency, practical use, 
or tractability on conventional computers. This pa- 
pers examines these departures from time accuracy 
and introduces methods to enhance the time accu- 
racy of conventional schemes. Approximations are 
examined for their effect on time accuracy, subiter- 
ation techniques designed to improve time accuracy 
are presented, and analysis for time accuracy assess- 
ment are introduced. 

Introduction 
Since 1976, when Steger [I] first introduced a 

practical implicit finite difference scheme for the Eu- 
ler and Navier-Stokes equations, there have been nu- 
merous (too numerous to reference here) modifica- 
tions and new methods developed which use implicit 
time approximations with various spatial discretion 
techniques. Until recently, most of the effort was 
directed toward steady state or slowly varying un- 
steady applications. Most of these use either large 
time steps, spatially variable scalings, or precondi- 
tioning~ techniques to accelerated convergence. The 
next generation of challenges in CFD, though, will be 
in the area of unsteady time accurate calculations. 
At face value one might assume that explicit tech- 
niques are the choice for such computations. The de- 
mands of adequate boundary layer and complicated 
geometric resolution make explicit methods too re- 
strictive in terms of time steps and efficiency for most 
practical cases. The alternative is to develop more 
efficient and accurate implicit methods. One advan- 
tage of implicit methods over explicit is that larger 
time steps can be used than would be permitted 
by explicit stability bounds. For instance, a high 
Reynolds number viscous transonic airfoil computa- 
tion using fine grid resolution at the surface typically 
requires CFL numbers in the wall normal &rection 
on the order lo3. These arguments have been de- 
lineated many times in many references and appli- 
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cations with the result that implicit methods of one 
form or another are widely used today. 

This paper will address some of the approxi- 
mations used to make implicit methods more effi- 
cient and practical for the solution of the Euler and 
Navier-Stokes equations. In particular, approximate 
factorizations, diagonalizations and linearization ap- 
proximations will be reviewed and categorized. A 
subiteration correction scheme commonly used today 
will be presented, improved, demonstrated and ana- 
lyzed. This scheme is used to produce a second order 
accurate, more robust implicit method for unsteady 
flow computations. 

Nonlinear Equations 
A generic form of a system of partial differential 

equations will be used for demonstration and analy- 
sis. 

will represent our generic nonlinear scalar or system 
of equations. This generic system of equations may 
represent any number of conventional problem defi- 
nitions, for example: 

The one- or multi- dimensional Euler or Navier- 
Stokes equations. Where, for example, 

(2.1) 
for the 2D Euler equations. 

A more conventional way to write the 2D Euler 
equations would be 

where Q is a vector of n variables and E, F represent 
the nonlinear flux vectors. 

There are many more choices for nonlinear equa- 
tions encountered in the literature, e.g. the full Navier- 
Stokes equations, viscoelastic equations, equations 
involving chemical reactions, etc. In each case the 
system is castable into a form where F(Q) is uniquely 
defined. 
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Implicit Forms 
An implicit approximation in time for the solu- 

tion of Eq.(l) can be written as 

with AQn = Qn+l - Qn and Qn = Q(nAt). The 
parameters 6 and cp can be chosen to produce differ- 
ent schemes of either first or second order accuracy 
in time. 

The values 6 = 1 and cp = 0, results in the first 
order Euler implicit scheme, 6 = 1/2 and cp = 0 
for a trapezoidal implicit or for 6 = 1 and.cp = 112 
gives the three point backward second order implicit 
scheme. 

Replacing Q with -F(Q) we have (neglecting 
the higher order terms) 

Equation (4) is nonlinear in terms of Qn+' due to 
the second term on the left hand side. The nonlinear 
terms are linearized in time about Qn by a Taylor 
series such that 

where A = dF(Q)/dQ is typically called the Ja- 
cobian of F and AQn is O(At). Note that the 
linearizations are carried out to the 0(At2)  terms. 
These terms will be multiplied (see below) by At and 
so if a second order time scheme had been chosen the 
linearizations would not degrade the time accuracy. 

Replacing F(Qn+') using Eq.(5) in Eq.(4) one 
gets 

(6) 
which is second order accurate in time for cp = 0,6 = 
1 or 9 = $, 6 = 1 . Equation (6) is kept in what is 
called "Delta Form," referring to the AQn = Qn+' - 
Qn term on the left hand side. The left hand side 

of Eq.(6) and similar equations will be referred to 
as the implicit  s ide and the right hand side as the 
explicit side . 

Equation (6) is the basis for most implicit time 
integration schemes. If the original problem of in- 
terest was a system of nonlinear partial differential 
equations, e.g. the Euler equations, then the implicit  
side operator of Eq.(6) would represent a matrix op- 
erator of the order of the system size. In addition, 
if finite difference operators were used for the spatial 
derivatives then the implicit  s ide would represent an 
even larger matrix system of the order of the system 
size times the discrete grid dimensions. Typical ex- 
amples of such schemes can be found in Refs. [2,3] 
among numerous others. We shall not go into the 
detail of various implicit solution algorithms, except 
where it pertains to the approximations used to solve 
such schemes. 

Implicit Approximations 
In general, Eq.(6) is not too difficult, but pro- 

hibitively time consuming, to solve directly. Large 
sparse matrix systems usually result from conven- 
tional finite difference or finite volume schemes for 
the spatial derivatives. Approximations to the i m -  
plicit side operator in Eq.(6) are employed to either 
improve the efficiency, reduce computer storage re- 
quirements, enhance the stability, or map the system 
onto nonconventional computers (e.g. parallel imple- 
mentation, Jespersen and Levit [4]). 

Equation(6) is rewritten as 

Approximations to L(Qn) are made for a variety 
of reasons. In steady state computations (where one 
is just interested in satisfying AQn = O), any ap- 
proximation to L(Qn) which produces a stable and 
convergent solution process is admissible. In fact, 
L(Qn) is typically taken as some O(At ) approxima- 
tion. Some example approximations are presented 
below. 

Beam and Warming [5] developed an approxi- 
mate factorization of multidimensional implicit schemes 
applied to the Euler and Navier-Stokes equations. 
The implicit scheme applied to Eq.(2.2) yields 

with An = g, Bn = aQ,.f2 = - 19At and p =  P' 
(8) 

l+cp l+cp' 
Second order central differences are typically used 

for the 8 derivatives in Eq.(8), which would lead to 



a very large sparse matrix representing L(Qn). A 
template representation of the sparse system is 

where the band width of the above matrix is directly 
proportional to minimum grid &memion which can 
be quite large. 

Factorization of Eq. (8) produces 

[I + ad,An] [I + ady Bn] AQn 

- a 2 ( d z ~ n ) ( d y ~ n ) ~ ~ n  = R(Qn, Q"-') 
(9) 

The cr2 term in Eq.(9) can be neglected since 
with AQn = O(At) that term is now 0(At3) which 
maintains the second order accuracy of the implicit 
scheme. In Eq.(9), each of the separate impl ic i t  s ide  
operators are now banded block tridiagonal matrices 
and are much easier to invert, see [2] for more de- 
tails. A template representation of each of the block 
tridiagonal operators is 

where the band width is now proportional to the sys- 
tem dimension which is four for the two-dimensional 
Euler equations. The approximate factorization at 
least maintains the accuracy of the implicit scheme, 
although it may affect iterative convergence and sta- 
bility, see Pulliam [2]. 

Pulliam and Chaussee [6] introduce a further ap- 
proximation where they diagonalized the implicit op- 
erators in Eq.(9) using the eigensystems of An = 
X(Q)AAX-'(Q) and Bn = Y (Q)ABY-'(Q). 

Briefly, the eigenvector matrices for An and Bn  
are factored out of the implicit operators producing 

The advantage of this scheme is reduced oper- 
ation counts for the inversions. Instead of banded 
block matrices, one now deals with matrix multi- 
ples and banded scalar inversions, since the brack- 
eted terms are diagonal. Other advantages of this 
scheme are described in Ref. [2]. One disadvantage 
is that the maximum time accuracy is now first order 
(the error term in Eq.(lO) is 0(At2)). Another dis- 
advantage is that the unsteady nature of this scheme 
is nonconservative due to the solution dependence of 
eigenvector matrices and the errors induced by the 
diagonalization. On the other hand, the steady state 
solutions for this scheme would be identical to the 
nondiagonalized scheme (the approximation only af- 
fect the impl ic i t  s ide  which at convergence goes to 
zero leaving R(Qn,&"-') = 0 for both schemes), 
see Pulliam [6]. 

A number of other common approximations have 
been used with varying degrees of consequences in 
terms of accuracy, efficiency, and stability. Time and 
space would only allow one to address a small sub- 
set of the numerous approximations presented in the 
literature. One common approximation is to use low 
order accurate spatial difference operators on the i m -  
plicit s ide  of Eq.(6) and high order operators on the 
explicit s ide  . This is especially advantageous when 
high order upwind differences are used in conjunc- 
tion with flux splitting or flux difference methods, see 
Steger and Warming [7] or Rai [8]. Other approxi- 
mations include, modified flux Jacobians, incomplete 
decompositions of the implicit side matrices, approx- 
imate artificial dissipation operators and many more. 
In general, we consider our system of equations to be 
of the form 

where the second term on the impl ic i t  s ide  is O(AtP) 
since AQn is O(At). Of concern is the effect of 
the error term on stability, iterative convergence to 
a steady state, and in particular for this paper, the 
resulting time accuracy when approximations are ap- 
plied. 

We shall now examine an example of the type of 
approximation discussed above. Consider the model 

xl( 



linear problem ut +uz = 0 (the 1D scalar wave q u a -  of operators produces a stable algorithm for first or- 
tion) and an implicit time differencing of the form der Euler implicit and unstable for trapezoidal im- 

plicit and 3pt backward implicit. Thus the only sta- 
6At - At un+l - Un)  = -- 6,un ble method is at  best only first order in time. As we 

1 + CP 
(I2) shall see below, second order time accuracy can be re- - 

covered by employing the diagonal algorithm (using 
where we allow 6*, to be distinct from 6,. The use of scalar pentadiagonal operators to obtain a stable in- 
different differencing stencils on the implicit side and tegration) and subiteration to regain time accuracy. 
explicit side-is one way to produce an efficient algo- 
rithm and still maintain a minimum level of temporal 
and spatial accuracy. For example, fourth order five 
point difference stencils can be used on the explicit 
side . Then either, the same five point differencing 
on the implicit side leading to pentadiagonal inver- 
sions or for efficiency three point central differences 
could be used on the implicit side to reduce the in- 
version requirements to the more efficient tridiagonal 
operator. This is particularity important for systems 
such as the Euler and Navier-Stokes equations where 
the inversion requirements for a fully implicit treat- 
ment of a fourth order scheme, even with approxi- 
mate factorization, would lead to block pentadiago- 
nals in contrast to block tridiagonals, see Ref. [9]. 

Although, the use of higher order differences on 
the explicit side and lower order on the implicit side 
enhances the efficiency of the scheme it may reduce 
the time accuracy to O(At). As shown below, for 
the implicit schemes examined here, the only stable 
time integration is the Euler implicit O(At) scheme. 

Subiteration to Second Order Accuracy 
In the case of time accurate computations, the 

second order fully implicit scheme would seem to be 
the proper choice. We have seen above that approx- 
imate factorization can make such a scheme reason- 
ably efficient and does not reduce the time accuracy 
below second order. In practice though, even the 
implicit factor algorithm may be computationally ex- 
pensive and in the case of very sophisticated spatial 
difference operators (e.g., fourth order accuracy leads 
to block penta-diagonal inversions) the cost may be 
prohibitive. 

One way to take advantage of simplifying ap- 
proximations to the implicit side and still maintain 
a desired accuracy is to employ a subiteration time 
stepping procedure, for example see Rai [8]. We shall 
examine such a process and develop improvements, 
analysis and optimization procedures for its use. 

The goal is to obtain a second order in time dii- 
ference approximation in time to Eq.(l) 

If the scheme converges, then the steady-state solu- 
tion achieves the desired spatial accuracy used on 6At 

At [z + F(Q)] ii AQn + -F(Qn+') = 
the explicit side . To recover second order accu- ~ + C P  
racy one might at first employ either the trapezoidal (6 - l)At cP F ( Q ~ )  + -AQ"-' 
or the three point backward implicit schemes. Von ~ + C P  

+ o ( A ~ ~ )  
l + c p  

Neumann analysis of the implicit time differencing (14) 
schemes for the choices of 6,u = ( ~ j + ~  -uj-')/(2Ax) for Proper choices of 9 and 6. 
(second order central differences with a Fourier sig- Neglecting for now the error term, rewrite Eq.(14) 

t s ln  A z  .. 
nature +) and 6,uj = ( - ~ j + ~ + 8 ~ ~ + ~ - 8 ~ ~ - ~ +  substituting a new iterative index p + 1 for the n + 1 
~ j -~ ) / (12Ax)  the five point fourth order central dif- h m s  and add QP to both sides of the equality, giv- 
ference gives an amplification factor ing 

1 - ei sin j~~ [$ - 1 + 2 sin2 6At 
39 1 AQP + -F(QP+') = 

u(6) = l + c p  
1 + s i s i n  j ~ x  (6 - l)At 

(13) - ( Q P - Q n ) +  I + p  F(Qn) (15) 
for cp = 0 and a similar but more complicated ex- cp 
pression for cp # 0. It is easy to show that the norm + -AQ"-' 

of the amplification factor 48)  for all At and Ax 
l + c p  

is less than one (unconditionally stable) for 6 = 1 
and greater than one (unconditionally instability) for 
6 = 112 . Results for the three point backward time 
implicit scheme also show unconditionally instability 
for the above combination of operators. This choice 



Linearizing about QP and writing in 'Delta Form" 
we have 

with Ft(QP) = BF/BQ. 
(16) 

Equation (16) is the basic subiteration time ad- 
vance scheme which will yield second order time ac- 
curacy independent of the choice of Ft(Qp) if the 
subiteration process converges. The nand n- 1 terms 
are evaluated from previous time levels and after it- 
erating p times the solution at  time level n+  1 will be 
taken from the most recent Qp+'. Choosing cp = 3 
and 6 = 1, in the limit (assuming the iterative pro- 
cess converges) Qp+' = Qp, setting Qn+' = Qp+l 
we have 

which is a second order in time fully implicit approx- 
imation to Eq. (1). 

Equation (16) can be written in a form similar 
to Eq.(7) 

where R(QP, Qn, Qn-' ) represents the fully implicit 
approximation to Eq. (1). We can now consider the 
implicit side as the error term of order O(Atr) with 
r 2 2 .  

Analysis of Eq.(18) will determine conditions on 
the approximate implicit operator L(Q ). The first 
criteria on C(Q) is that the resulting iterative scheme 
does converge. The additional requirement is that 
the local subiteration process be performed until the 
error is second order in time. The convergence of 
the iterative process and the accuracy requirement 
are directly linked, if the iterative scheme fails to 
converge the error term will be large. 

The solution procedure when employing Eq.(18) 
is as follows. Given a choice of the approximate oper- 
ator C(Q) and an initial solution Qn (probably from 
one iteration of a first order scheme) a given num- 
ber of subiterations p = 0,1,. . . , np are performed 
(typically 3, but some analysis below will provide 
guidelines for a proper choice). Comparing Eq.(16) 
and Eq.(6) we see a change of variable (n to p) and 
the addition of a few terms to the explicit side . If 

one assumes that a given numerical code represents 
the basic operators L and R ,  then the addition of the 
subiteration process is a trivial source term included 
in the numerical code. The amount of extra compu- 
tational work is &rectly proportional to the number 
of subiterations required. Note that all operations 
of the original numerical code, including boundary 
operators are applied to QP. After the subiteration 
process is adequately converged the solution Qn+' is 
updated. 

Analysis of Subiteration Scheme 
The implicit side operator L in Eqs. (16) or (18) 

can be chosen as any scheme which will guarantee 
convergence of the iteration in p. Rewriting Eq.(16) 
in terms of a general implicit operator C(Qp) we have 

a perturbation eP = QP - q is introduced, where 
satisfies the implicit scheme to our desired time accu- 
racy. We can examine the stability and convergence 
of the subiteration scheme by analyzing 

( m  
which for small e and linearized about g reduces to 

(21) 
Ignoring the linearization error (which is 0(At3)) 

and collecting terms, we have 

. , 
The requirement for stability and convergence of the 
subiteration scheme is that 

implying that 



Note this requires that the appropriate values of 
cp be used in the approximate impl ic i t  s ide  operator. 
In fact, an improper implementation will suffer in 
terms of convergence of the subiteration process and 
in some cases stability. This then, gives some guid- 
ance in the choice of L. Again, the criteria beyond 
convergence of the subiterative process, is a choice 
of L which is efficient in terms of its implementa- 
tion while not requiring excessive subiterations for 
the desired accuracy. 

The requirement for accuracy is easily defined in 
terms of Eq.(19) as having 

fall within the truncation error of a second order ac- 
curate scheme. This term is exactly the residual of 
the integration operator which most numerical codes 
use as a measure of convergence. Error estimates 
should be obtainable from measures of the subitera- 
tion residual and/or its rate of convergence. In future 
work, we shall be investigating some of the classical 
ODE techniques for error estimation in an attempt 
to estimate the number of subiterations required for 
a certain level of solution accuracy. In practice one 
finds that two to three subiterations gives adequate 
accuracy for most problems. Examples are given be- 
low in the results sections. 

Results 

The diagonal form of the implicit Beam-Warming 
scheme, as define in [6], will be used as the base in- 
tegration scheme L with fourth order spatial differ- 
encing and artificial dissipations on the ezplicit  s ide  
as defined in Ref. [2]. This is an efficient and prac- 
tical algorithm which is widely used in CFD. The 
subiteration process defined above in Eq.(16), with 
6 = 1.0 and cp = 0.5, i.e. the second order backward 
implicit scheme, will be used unless noted below. In 
some of the cases a full second order block tridiago- 
nal algorithm will be used for comparison purposes. 
The implicit code, ARC2D [2] will be used for the 
results presented below. ARC2D can be used in ei- 
ther the diagonal form, a block tridiagonal option, or 
a block pentadiagonal option. Typical CPU time in 
microseconds per iteration per grid point on a CRAY 
YMP for various options are shown in Table 1, where 
both periodic and nonperiodic cases are examined. 

Option 
Diagonal 
Block Tki 
Block Penta = 40.0 

Table 1. Timing Comparison F'rom ARC2D. 

Note that the block tridiagional option is ap- 
proximately a factor of 1.84 for nonperiodic case and 
2.3 in the periodic case more CPU time per time 
step per grid point than the diagonal option and ap- 
proximately 2.77 more expensive for the block pen- 
tadiaonal option. The result of a factor of 4.8 for 
the periodic block pentadiaonal is an approximation 
based on operation count estimates. 

Pulliam and Chaussee [6] show that the use of 
the diagonal form of the implicit approximate factor- 
ization scheme leads to a nonconservative behavior 
for unsteady shock motions. They demonstrate such 
a problem for the 1D shock tube problem solved us- 
ing the 1D Euler equations. Figure l a  shows a simi- 
lar result where the second order fully implicit (Block 
tridiagonal) scheme, the exact solution, the first or- 
der diagonal algorithm, and a corrected second order 
subiteration results are shown for a typical case. An 
initial pressure jump of 10 is propagated to the same 
physical time in all four results. It is quite evident 
that the first order diagonal scheme results in an im- 
proper shock jump and shock speed. The two second 
order results compare quite well with the exact solu- 
tion getting both the shock jump and the speed cor- 
rect. Figure l b  shows a closer view of the solution in 
the vicinity of the shock. For this case three subiter- 
ations were used, although two would have been suf- 
ficient. The subiteration process not only corrected 
the time accuracy but also restored the time conser- 
vation properties of the original scheme. 

The second example is 2D Navier-Stokes flow 
past a circular cylinder at a Mach number, M, = 0.1 
and a Reynolds number, Re = 120. Fourth order 
spatial differences were used along with low levels 
of artificial dissipation which did not interfere with 
the physical dissipation. At these conditions the flow 
is in a state of unsteady vortex shedding behind the 
cylinder with a shedding frequency (Strouhl number) 
St = 0.186 which is consistent with published results. 
Figure 2 contrasts results using the 2D Navier-Stokes 
code ARC2D [2] comparing St versus At for the stan- 
dard algorithm (first order Diagonal implicit) and 
subiteration scheme results using both two and three 
subiterations. There is a large variation of the pre- 



dieted St with decreasing At for the first order di- 
agonal algorithm, where adequate results are only 
found for At < 0.05, see Fig. 2. In the case of just 
two subiterations, comparable accuracy is obtained 
at a At = 0.4 a factor of eight in time step balanced 
against only a factor of two in computational work. 
For the three subiteration case, second order time 
accurate results are obtained at At 0.5, a factor of 
ten larger than the standard algorithm while only in- 
creasing the computational work by a factor of three. 
This translates into a factor of three to four improve- 
ment in efficiency over a small time step first order 
diagonal result, comparable savings have been real- 
ized for a variety of other cases. A second order in 
time fourth order in space block penta diagonal solu- 
tion would be comparable in computational cost to a 
three subiteration diagonal algorithm result. But, as 
we noted above and will see below, there are other 
advantages to the subiteration process in terms of 
time conservation and robustness which make it the 
algorithm of choice. 

Another example of the effectiveness of the subit- 
eration process is its affect on boundary conditions. 
Boundary condition operators can be highly nonlin- 
ear and quite complicated, e.g. characteristic in- 
flow/outflow conditions. In general, their implemen- 
tation in implicit codes is handled explicitly, although 
implicit treatment is advised whenever practical. A 
common occurrence with the use of explicit bound- 
ary conditions is the appearance of pressure and den- 
sity oscillations near the boundary which are a di- 
rect result of the time lagged nature of the boundary 
schemes in relation to the implicit update of the inte- 
rior. Although numerical dissipation mitigates pos- 
sible problems associated with this, especially in the 
transient development of a flowfield, it is not unusual 
for this phenomena to adversely affect both the sta- 
bility and convergence of typical computations. The 
possible time step or convergence acceleration to a 
steady state may be restricted. For unsteady prob- 
lems, initial condition dependent transients may take 
a long time to relax and time steps for tracking un- 
steady features may be restricted. Subiteration can 
be used to alleviate this problem and thereby en- 
hance to robustness and convergence of a numerical 
code. Take for example the case of the artificial wake 
cut behind a 2D airfoil in a "C mesh" grid, see Fig. 3. 
The wake cut is an computational convenience along 
which boundary values are typically provided from 
averages of the values from upper and lower points 
on either side of the cut. (It should be pointed out 
that fully implicit treatments of the wake cut are 

not difficult to implement.) If explicit treatment is 
used in updating wake cut values it is not unusual 
for the transient solution in that region to exhibit 
wild oscillations of pressure and density which may 
cause computational stability and convergence prob- 
lems. Figure 4 shows trailing edge pressure contours 
from the early time development of an inviscid "C 
Mesh" NACA 0012 airfoil computation at M ,  = 0.8 
and a = 1.25 using the implicit finite difference code 
ARC2D [2] and explicit treatment of the wake cut 
boundary. In the case where the standard algorithm 
is used withdut subiteration, the wake region exhibits 
large oscillation of pressure, as seen in Fig. 4a. A 
larger time integration step would produce negative 
pressure and "blow up." When subiterations are 
used the smooth flow shown in Fig. 4b results and 
larger time steps can be used to accelerate the solu- 
tion convergence. In this case six subiterations steps 
per time advance produces the smooth contours, but 
three subiterations are sufficient to produce a more 
robust transient development. 

Summary 
Until recently, numerical algorithm development 

in CFD has concentrated on steady state or slowly 
varying unsteady applications. The next generation 
of algorithm development will concentrate on un- 
steady time accurate computation. Unsteady wave 
propagation for aeroacoustics, computational elec- 
tromagnetic~, unsteady shock boundary-layer inter- 
actions, complicated vortex surface interactions, large 
eddy simulation, etc, are just a short list of the im- 
portant problem areas. The requirements of mesh 
and time resolution balanced against limited com- 
puter resources will always lead to simplifications. 
One technique to recover the time accuracy of im- 
plicit approximations is through the use of subiter- 
ation. This paper attempts to delineate some com- 
mon approximations, examine their effect of stabil- 
ity, iterative convergence, and time accuracy. The 
subiteration approach can be used to recover time 
accuracy without increasing computational work (in 
most cases producing substantial savings). Criteria 
for implicit approximation choices, automatic time 
step procedures and subiteration limits are the next 
areas to be investigated. 
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FIGURE 1 ~ .  1D Euler Shock Tube Results. 

FIGURE 1 ~ .  Close Up Of 1D Euler Shock Tube 
Results. 

W- Cvllndof Ro =I20 

FIGURE 2. Strouhl Number vrs At for 2D Cylinder 
at M, = 0.1 and Re = 120. 



FIGURE 3. "C Meshn Physical to Computational Space Mapping Showing Wake Cut. 

FIGURE 4 ~ .  Trailing Edge Pressure Contours Show- FIGURE 4 ~ .  Trailing Edge Pressure Contours Show- 
ing Explicit BC Wake Cut Oscillations. ing Effect of 6 Subiterations. 
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